
MENU

Securely access AWS
Parameter Store from

ticketea engineering © 2018 Powered by Ghost + Boo

your Elas�c Bean�alk
Do�er containers
19 June 2017 on aws, ec2, security, docker, iam, elasticbeanstalk

Reasoning

Managing con�guration is always a tough choice. Whether

you’re following the 12-Factor methodology environment

variables suggestion, classic con�guration �les or any

other approach, the discussion of "how safe it is?" always

comes up. AWS provides the Parameter Store service,

inside the EC2 Systems Manager services. It is an easy to

use con�guration manager consisting of an account-wide

store, a small API to do typical operations like get, put, list

or delete con�guration values, and integration with some

of their services ecosystem, mainly IAM and

CloudFormation.

We are going forward regarding using Elastic Beanstalk for

at least one of our new projects regarding application

lifecycle and deploy, placing our applications inside Docker

containers. The why and how (and it’s caveats) it’s a topic

we’ll leave for future posts, but focusing on the subject at

hand, we wanted our containers to securely access
Systems Manager Parameter Store and retrieve from
there any con�guration value, whenever is a Redis

hostname or a third-party API key.

Our Solu�on

After some research and experiments, we have a working

solution, which we feel is not perfect, as it implies installing

AWS CLI on the Docker instances, but it works and we keep

adhering to our requirement of con�guration via

environment variables on the containers (and not on the

host machine).

This is our current setup:

EC2 Systems Manager Parameter Store parameters

of type SecureString (encrypted with KMS).

An IAM policy, restricted to:

Allow only ssm:GetParameters action (e.g. no listing

of all parameters allowed).

Allow access to only parameters “namespaced” to

our application. Example policy JSON:

{

"Version": "2012-10-17",

"Statement": [

 {

"Effect": "Allow",

"Action": [

"ssm:GetParameters"

],

"Resource": "arn:aws:ssm:eu-west-1:<account-

id>:parameter/my-app.*"

 }

]

}

An IAM role that uses the previous policy.

Elastic Beanstalk Docker container application.

Instances will either be Amazon Linux running Docker or

Ubuntu 16 , all with the custom IAM policy applied to

them.

AWS CLI installed on the containers, via Dockerfile or

requirements.txt :

RUN pip install awscli

Custom shell script that will run upon instance boot

via Dockerfile , which dumps con�guration parameters

to environment variables:

ENTRYPOINT ["/tmp/start.sh"]

Contents of the shell script:

#!/usr/bin/env bash

set -e

export CONFIG_VALUE=$(aws ssm get-parameters --names

config-param --region eu-west-1 --with-decryption

--query Parameters[0].Value --output text)

exec python /tmp/application.py

Conclusions

With this solution, we achieve our main goal of limiting
exposure of con�guration parameters as much as

possible (e.g. avoiding dumping them to a con�guration

�le), while keeping our desired environment variables

approach.

We could also use boto3 (the o�cial Python library for

interacting with AWS) so there would be no intrinsic risk of

having environment variables “alive” inside the containers,

but until we have more services and experience with

Elastic Beanstalk, we prefer the �exibility of env vars.

Miscellaneous notes

Amazon advises to install their SSM Agent, and we did so

via Dockerfile :

WORKDIR /tmp

RUN wget https://s3.amazonaws.com/ec2-downloads-

windows/SSMAgent/latest/debian_amd64/amazon-ssm-

agent.deb

RUN dpkg -i amazon-ssm-agent.deb

But we tried removing the agent, and AWS CLI still works

�ne, which makes sense as IAM roles should be enough,

and the agent seems to be more oriented to being able to

execute remote commands and notify Systems Manager of

instances inventories/�eets (which we don’t use).

We did multiple tests and checked quite a few AWS

documentation pages and internet articles containing

di�erent approaches. For example, one thing we tested

was doing the environment variables setup/exposure on

the Docker host instead of the machines, but mainly found

that:

Using .ebextensions with normal command environment

variables are not propagated to containers.

Using .ebextensions with option_settings and

overrides via a command doesn't work and only default

value is propagated to the containers.

Using .ebextensions with special deploy folders and

shell scripts like /opt/elasticbeanstalk/hooks/appdeploy

/post/export_env_vars_on_host.sh is discouraged by

AWS support. We do use /appdeploy/pre/ hooks but

only to do trivial operations like Dockerfile composing

(from multiple pieces).

Using aws elasticbeanstalk update-environment on the

host to update itself the value of some variables forces

us to give additional permissions to the IAM role and

still feels a risky approach, so we discarded it.

{{ssm:<parameter-name>}} Replacements on

con�guration �les are not supported by Elastic

Beanstalk, seems to be a feature only for EC2 Systems

Manager's Run Command , and only supports

alphanumeric parameter names (e.g. myapp.prod.myvar

won't work).

Diego Muñoz 'Kartones'

Read more posts by this author.

0.0.0.0, Madrid https://kartones.net

Share this po�

A prac�cal
approa� to a

Rea� Na�ve app

Yes, React Native is a modern

and a very young framework.

It was released in June 2015,

so it…

Building apps
with Rea�
Na�ve at

��etea. Lessons
Learned

"Ok, let's make an app. I

mean... two apps?" The

decision In spring 2016 we

decided to make a…

