
MENU

Using json-s�ema for
REST API endpoint te�s
14 November 2017 on python, django, testing, json-schema, API

ticketea engineering © 2018 Powered by Ghost + Boo

Testing REST APIs is a bit like the Wild West. There are tons

of ways to do it, di�erent approaches depending on the

development language, but no established best practice.

This post starts by mentioning a typical way of testing JSON

API endpoints that, while works, can be improved. Then,

we'll modify the code to apply a better approach taking

advantage of an output format speci�cation.

Let's assume the following scenario. We start with a very

simple entity with some properties:

class MyEntity:

 @property

 def id(self) -> str:

 return "my entity id"

 @property

 def a_property(self) -> bool:

 return True

 @property

 def another_property(self) -> int:

 return 13

To separate concerns, we have built a Presenter class that

handles preparations for a format that can be used from

our API endpoints (Django views that will output JSON):

from typing import Dict

from .my_entity import MyEntity

class MyEntityPresenter:

 @staticmethod

 def to_dict(entity: MyEntity) -> Dict:

 return {

 "id": entity.id,

 "a_property": entity.a_property,

 "another_property": entity.another_property

 }

And we have a Django view that we’ll assume it is already

routed:

from django.http import HttpRequest, JsonResponse

from .my_entity import MyEntity

from .my_entity_presenter import MyEntityPresenter

def entity_data_json_view(request: HttpRequest, *args:

Any, **kwargs: Any) -> JsonResponse:

 """

 This is our main example endpoint.

 For the sake of the test we assume it is routed to

`/entities/`

 """

 my_entity = MyEntity()

 return

JsonResponse(MyEntityPresenter.to_dict(my_entity))

JSON-�e�ing te�s

Having those components, the following is a common way

of testing JSON outputs:

import json

from typing import Any

def test_my_entity_valid_json_output(settings: Any,

client: Any) -> None:

 expected_output = '{"a_property": true, "id": "my

entity id", "another_property": 13}'

 response = client.get("/entities/")

 assert response.status_code == 200

 response_data = json.loads(response.content)

 assert json.loads(expected_output) == response_data

The problem with this approach is that the test is very

fragile. Any time you change the output format, you need

to go and edit a stringi�ed JSON. And even if you setup the

expected data as a dictionary that you then dump to JSON

to compare, it is still cumbersome and error-prone, as you

will be often coming back to update the expectation of the

test (which otherwise would break).

JSON-S�ema based te�s

Let's introduce JSON-schema. For those of you that in the

past have worked with XML, JSON-schema is to JSON what

XSD is to XML, a documented and explicit way to de�ne the

structure and data types that you will �nd inside JSON

documents.

In order to accommodate it, we'll update the Presenter

class to contain also the schema de�nition:

from typing import Dict

from .my_entity import MyEntity

class MyEntityPresenter:

 @staticmethod

 def json_schema() -> Dict:

 return {

 "type": "object",

 "properties": {

 "id": {"type": "string"},

 "a_property": {"type": "boolean"},

 "another_property": {"type": "number"}

 },

 "required": ["id", "another_property",

"another_property"]

 }

 @staticmethod

 def to_dict(entity: MyEntity) -> Dict:

 return {

 "id": entity.id,

 "a_property": entity.a_property,

 "another_property": entity.another_property

 }

By placing both the code that creates the output dictionary

and the json schema on the same �le, we make updating

both places in case of any change easy to remember. Our

recommendation is to always start updating the schema so

the test will fail if you forget to re�ect the change at the

to_dict method.

There are many more options to make the schema

de�nition really strict, from optional values to

enumerations or value ranges, and of course it supports

nested entities. Check out the JSON-schema

documentation for all the information.

We modify the Django views to use the new classes and

provide a nice helper endpoint:

from django.http import HttpRequest

from django.http import JsonResponse

from .my_entity import MyEntity

from .my_entity_presenter import MyEntityPresenter

def entity_data_json_view(request: HttpRequest, *args:

Any, **kwargs: Any) -> JsonResponse:

 """

 This is our main example endpoint.

 For the sake of the test we assume it is routed to

`/entities/`

 """

 my_entity = MyEntity()

 return

JsonResponse(MyEntityPresenter.to_dict(my_entity))

def entity_data_json_schema_view(request: HttpRequest,

*args: Any, **kwargs: Any) -> JsonResponse:

 """

 This endpoint allows to output the expected json-

schema.

 It is useful both for debugging purposes and for

when

 you wish to provide a public interface to the

endpoint.

 It can also easily be adapted to be used in tools

like Swagger.

 """

 return

JsonResponse(MyEntityPresenter.json_schema())

Now to the proper test. As every presenter will contain the

de�nition of the contract it expects to be ful�lled, we

simply need to test that a call to the entity endpoint

returns a JSON that at minimum contains the JSON schema

�elds and structure (it can have more �elds).

import json

from typing import Any

from jsonschema import validate

from .my_entity_presenter import MyEntityPresenter

def test_my_entity_valid_json_output(settings: Any,

client: Any) -> None:

 response = client.get("/entities/")

 assert response.status_code == 200

 response_data = json.loads(response.content)

 # raises exception upon any validation error

 validate(response_data,

MyEntityPresenter.json_schema())

 assert response_data["id"] == "my entity id"

 assert response_data["a_property"] is True

 assert response_data["another_property"] == 13

Schema checks are very fast, so nothing forbids you from

also using them in other places, like validation of input

data, or across microservices boundaries. You could even

setup a mechanism to expose JSON-schema contracts

from your services, so other services could fetch and run

tests against them without actually needing to boot up

multiple services (what is usually known as contract-based

integration testing).

Addi�onal notes

These are the requirements we've used to run this or a

similar example:

Django==1.11

uwsgi>=2.0

Following requirements only for testing

pytest>=3.0

pytest-django>=3.1

jsonschema>=2.6.0

You might be wondering why we use pytest and pytest-

django . The answer is that if you take a look at the test

method arguments, settings and client , instead of

having to manually load Django settings (for example, to

change them for certain tests) or setup a test client to run

http requests to your API, pytest-django provides both

�xtures automatically to every test.

Diego Muñoz 'Kartones'

Read more posts by this author.

0.0.0.0, Madrid https://kartones.net

Share this po�

Introducing
Pynesis - a

�e�poin�ng
ab�rac�on

library for AWS
Kinesis

This is a long overdue post

about a library we open

sourced earlier this year.

TLDR; it's called Pynesis…

AWS case �udy:
��etea

Amazon Web Services has

recently published a case

study on ticketea,

highlighting and explaining

our usage of the AWS…

