
MENU

How we migrated
��etea.com to Python

ticketea engineering © 2018 Powered by Ghost + Boo

3 in two weeks
12 January 2018 on python, django, cloud, gae

Ticketea.com is the platform where we showcase and sell

the majority of our events. The project powering it

(codenamed "Aphrodite"), was originally built using Python

2.7, and it was kept updated when new Django versions

came along. It currently runs on Django 1.11.

Python 3 is the present of the Python language, and all of

our new projects are being written using Python 3.6. When

adding new features to ticketea.com, we often came

across compatibility issues with components written for

newer versions of the language. We decided not to delay

the Python 2.7 → 3.6 migration anymore, and started

working on it.

All of our projects come with a Docker�le, so the �rst step

was to change Aphrodite's base image to be python:3.6-

slim .

This triggered the �rst issues:

Outdated external libraries which needed to be

updated to newer versions featuring Python 3

compatibility

basestring to str , urlparse to urllib.urlparse and

similar major changes

Dictionary change like iteritems() to items() , or

.items() now returning a view.

Things that weren't needed anymore, like Django's

force_unicode or __future__ library tools.

Many of these issues were corrected just by running 2to3,

which not only �xed many of the compatibility issues, but

also applied patterns such as rewriting filter + lambda to

list comprehensions. Way safer than doing raw grep and

sed replacements!

Once we �nished working on the "low-hanging fruits", the

next step was to run Aphrodite's test suite and achieve

zero errors. We have multiple satellite Python libraries and

components, and while most already had a Python 3

compatibility branch, a few were outdated and missing the

latest bug�xes coming from master. Once this was �xed,

we discovered a few bugs while performing integration

tests. We ended up �xing things, increasing the test

coverage of those components, and those Python 3

branches won't be forgotten again (and will be merged to

master soon!).

Along the way, we applied the boy scout rule of "Always

leaving the campground cleaner than you found it". So we

�xed a few Django 1.11 deprecation warnings to prepare

for Django 2.0. As it usually happens with Django, the

o�cial documentation was excellent, explaining very

clearly how to implement the necessary changes.

When the test were all green, we started working on the

harder part: Manual integration tests, �rst in a local dev

environment, then in our staging environment.

Some of the issues we faced were:

Having to keep the Python 3 branch up to date with
master : This is a considerable e�ort unless you're able to

freeze any change to master (very unlikely in the real

world).

A non-trivial feature was delivered during the
migration. Due to the amount of modi�ed code, we

thought it was easier to merge the feature branch into the

Python 3 branch ASAP, and keep them synchronized.

Code coverage was around 70%, so of course when

something failed it was always from that remaining 30%.

There were no major issues and no need to rollback, and

we have more tests as a result, but as usual, the more

tests you have the better.

The pickle protocol version in python 3 can be higher

than the highest available in Python 2.7. So we needed

to add versioning to our Django caches, as python 2 goes

only up to pickle v.2 (caches with python 3.6 serialize with

pickle v.4).

Each modi�ed �le had to comply with �ake8 linting
rules. We recently setup a "linter test" that grabs all �les

you are modifying on the current branch and runs flake8

against them. This meant that, as we had to modify around

200 �les in total, all of them had to now be clean and

perfectly formatted python code :) We left out Django

migrations with long string literals, and �xed the rest. It

took some extra e�ort, but the results are worth it.

After staging tests were all �ne and error logs didn't

registered any issue, we proceeded to deploy to

production.

Afrodita is currently running on Google App Engine

Flexible, and one of the features our team loves with is

tra�c splitting:

With this feature, we can do canary releases with ease: We

just deploy our new version of the service, and start

redirecting small amounts of tra�c tra�c while we

monitor for unexpected errors.

After some minor bug�xes, we could bring the tra�c of the

Python 3.6 version to 100% with con�dence. We also had

the old version available for instant rollback, thanks to how

parallel versions and tra�c splitting work in GAE �exible.

We �nally stopped the Python 2.7 version (which was

receiving zero tra�c) and merged the Python 3 branch into

master .

And that is all. As the �nal note, this migration was

handled by just one developer and our QA engineer. When

you have the right tools you can minimize overhead and

focus on what really matters.

Diego Muñoz 'Kartones'

Read more posts by this author.

0.0.0.0, Madrid https://kartones.net

Share this po�

Introducing Pynesis - a
�e�poin�ng ab�rac�on library

for AWS Kinesis

This is a long overdue post about a library we open

sourced earlier this year. TLDR; it's called Pynesis…

